http://www.edutopia.org/multiple-intelligences-brain-research

The following is taken from the above article.  It ’s long but posses some interesting questions.  I wonder if there is any correlation between how the brain responds to learning an instrument early and how it responds to learning other skills early…like how to be organized, how to plan and how to use study skills to be successful. – Clayton

In musicians who play stringed instruments, for instance, the brain areas that affect the fingers of the left hand are larger than other people’s. This effect, described in Science magazine in 1995, is strongest for the four fingers — which do the bulk of the work manipulating the strings of, say, a violin — and weakest for the thumb. The earlier in life each musician had started to play, the more distinct were the differences in those parts of the brain.

Scientists have seen evidence like this for mental, not just physical tasks. In studies with strong implications for school, Shaywitz, codirector of the Yale Center for Dyslexia & Creativity, has shown that teaching can alter the brains of disabled readers. She and colleagues spent a year helping children with reading disabilities build their phonological skills. Afterward, the children’s reading improved, and fMRI pictures showed that activity in parts of their brains crucial for reading had jumped.

What does all this mean for educators? First, a caution: Neuroscientists insist there is no concrete proof that certain teaching practices are best for the brain. But we can make some inferences based on brain research, and in time our understanding will grow.

Judy Willis, a neurologist, middle school teacher, and author of several books on the subject, says educators can achieve a lot just by designing lessons that appeal to multiple senses. She suggests that teachers lead a child into a new subject through his particular strengths and interests. Once he’s engaged, a teacher can challenge him to use a different, weaker skill set for another part of the lesson, helping him develop those parts of his brain.

Shaywitz advocates personalization as a key to nurturing children’s growth. She encourages teachers to allow struggling readers, for example, to use dictation or to tell and experience stories through pictorial storyboards and videos. Reading is the bedrock of almost everything that happens in schools, but Shaywitz urges educators to recognize and reward other skills, too, as she has found that many kids with reading disabilities have a flair for the creative and the visual.

“Schools like to talk about individualizing, but it’s within very narrow parameters,” says Shaywitz. “So if we can show that children’s brains are different — that they need different nutrients, if you will — that’s a tremendous step to say, ‘It’s not trivial; they’re built differently.’”

The next step for scientists is to directly link brain changes to the broad experience of school. McCandliss is researching the difference that a year of school makes in the brains of first graders compared with peers who just missed the birthday cutoff for enrollment.

Of course, educators don’t usually have to look inside a child’s brain to see that she has learned something. But a deeper understanding of how education shapes the brain could give us new insights into what and how children can most successfully learn. Who knows: Maybe in some far-off future, we could supplement the narrow results of standardized tests with images of changes in the brain.